https://piazza.com/class_profile/get_resource/ln18bjs43q41tr/ln18n411vo070m

Motivation: Basis Expansion

Screen Shot 2023-11-14 at 1.30.15 PM.png

$$ \text{boundary}\\ x_1 -x_2^2 -5 = 0\\

w * \phi(x) + b = 0 \\

w = [1, 0, 0, -1, 0] \\ b = -5 $$

Basis for Quadratic Boundaries

Screen Shot 2023-11-14 at 1.34.52 PM.png

$$ \text{Quadratic in x = Linear in } \phi(x) $$

Suppose

$$ x = (x_1, x_2, x_3) \\ $$

$$ \phi(x) = (x_1,x_2,x_3, \\ x_1^2, x_2^2, x_3^2,\\ x_1x_2, x_1x_3, x_2x_3) $$

Then our enhanced function is 9-d

Suppose

$$ x = (x_1 ...x_d) \\

\phi(x) = (x_1,...,x_d, \\ x_1^2,...,x_d^2,\\ x_1x_2,..., x_{d-1}x_d) $$

Then any quadratic function is just a linear function in the expanded basis

Perceptron

Kernel Trick

RBF Kernel